LO\IE LY ' ‘

LY INSPECTOR

L

SMART CONTRACT
SECURITY AUDIT

ARKHAM TOKEN

i LOVELY
L5 INSPECTOR

TABLE OF CONTENTS

Table of Contents 2
Disclaimer 3
Audit Scope 4
Proposed Smart Contract Features >
Audit Summary 6
Key Technical Metrics /
Business Risk Analysis 8
Code Quality -
Documentation 9
Use of Dependencies 9
Project Website Performance Audit 10
Level of Criticality 11
Audit Findings Table 12
Audit Findings 13
Centralization 14
Conclusion 16
Addendum
e Logic Diagram 17
e Security Assessment Report 18
e Solidity Static Analysis 20
e Compliance Analysis 25
Software Analysis Result 29
INSPECTOR Lovely Info 30

¥ © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

i) LOVELY
L) INSPECTOR

DISCLAIMER

This is a comprehensive report based on our automated and manual
examination of cybersecurity vulnerabilities and framework flaws of the
project’'s smart contract. Reading the full analysis report is essential to build
your understanding of the project's security level. It is crucial to take note,
though we have done our best to perform this analysis and report, that you
should not rely on our research and cannot claim what it states or how we
created it. Before making any judgments, you have to conduct your own
independent research. We will discuss this in more depth in the following
disclaimer - please read it fully. DISCLAIMER: You agree to the terms of this
disclaimer by reading this report or any portion thereof. Please stop reading
this report and remove and delete any copies of this report that you download
and/or print if you do not agree to these conditions. Scan and verify the report's
presence in the GitHub repository by a QR code on the title page. This report is
for non-reliability information only and does not represent investment advice.
No one shall be entitled to depend on the report or its contents, and Inspector
Lovely and its affiliates shall not be held responsible to you or anyone else, nor
shall Inspector Lovely provide any guarantee or representation to any person
with regard to the accuracy or integrity of the report. Without any terms,
warranties, or other conditions other than as set forth in that exclusion
Inspector Lovely excludes hereby all representations, warrants, conditions, and
other terms (including, without limitation, guarantees implied by the law of
satisfactory quality, fitness for purposes and the use of reasonable care and
skills). The report is provided as "as is" and does not contain any terms and
conditions. Except as legally banned, Inspector Lovely disclaims all
responsibility and responsibilities, and no claim against Inspector Lovely is
made to any amount or type of loss or damages (without limitation, direct,
indirect, special, punitive, consequential, or pure economic loses or losses) that
may be caused by you or any other person, or any damages or damages,
including without limitations (whether innocent or negligent). Security analysis
is based only on smart contracts. No applications or operations were reviewed
for security. No product code has been reviewed.

iInspector.lovely.finance Audited by LOVELY INSPECTOR

r'L'll1 LOVELY
L= INSPECTOR

AUDIT SCOPE

4 i
Name Code Review and Security Analysis Report for
Arkham Token Coin Smart Contract
Platform Ethereum
File 1 ARKM.sol
Ethereum Code 0%x2291323¢cf23d1553¢c61f79dc30b4a8865c03a90cft
Audit Date November 8th, 2023
\ e ., . J

¥y 9 f

inspector.lovely.finance Audited by LOVELY INSPECTOR

r'L'll'1 LOVELY
-2 INSPECTOR

PROPOSED SMART CONTRACT
FEATURES

Claimed Feature Detalil Our Observation

Validated

Tokenomics:

e Name: Arkham
e Symbol: AKRM
e Decimals: 18

e Total Supply: 1 Billion

Validated
Ownership control:

e The owner can pause/unpause the contract state.
e Mint a new token.
o Current owner can transfer the ownership.

e Owner can renounce ownership

¥y 9 f

inspector.lovely.finance Audited by LOVELY INSPECTOR

i LOVELY
LL1) INSPECTOR

AUDIT SUMMARY

According to the standard audit assessment, the Customer s solidity-based
smart contracts are “Secured”. Also, these contracts contain owner control,
which does not make them fully decentralized.

[Well-Secured \

| Insecure Poor Secured Secure |
. You are here 4

We used various tools like Slither, Solhin,t, and Remix IDE. At the same time, this
finding is based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit Overview section. General
overview is presented in AS-IS section and all identified issues can be found in the
Audit overview section.

We found O critical, 0 high, 0 medium and 0 low, and 0 very low level
iIssues.

Investors Advice: Technical audit of the smart contract does not guarantee the
ethical nature of the project. Any owner-controlled functions should be executed
by the owner with responsibility. All investors/users are advised to do their due
diligence before investing in the project.

W © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY

!'LD.
L= INSPECTOR

KEY TECHNICAL METRICS

MAIN CATEGORY

Contract

Programming

Code

Specification

Gas Optimization

Business Risk

SUBCATEGORY

Solidity version is not specified

Solidity version is too old

Integer overflow/underflow

Function input parameters lack check
Function input parameters check bypass

Function access control lacks management

Critical operation lacks event log
Human/contract checks bypass

Random number generation/use vulnerability
Fallback function misuse

Race condition

Logical vulnerability

Features claimed

Other programming issues

Function visibility not explicitly declared
Var. storage location not explicitly declared
Use keywords/functions to be deprecated

Unused code

“‘Out of Gas” Issue
High consumption ‘for/while’ loop
High consumption ‘storage’ storage

Assert() misuse

The maximum limit for mintage is not set
“Short Address” Attack

"‘Double Spend” Attack

Overall Audit Result: PASSED

inspector.lovely.finance

RESULT

Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
N/A

Passed
Passed
Passed
Passed
Passed
Passed
Passed

Passed

Passed
Passed
Passed
Passed
Passed
Passed
Passed

Passed

Audited by LOVELY INSPECTOR

LOVELY

%
-2 INSPECTOR

BUSINESS RISK ANALYSIS

CATEGORY

Buy Tax
Sell Tax
Cannot Buy
Cannot Sell
Max Tax
Modify Tax

Fee Check

ls Honeypot
Trading Cooldown
Can Pause Trade?
Pause Transfer?
Max Tax?

s it Anti-whale?
s Anti-bot?

s it a Blacklist?
Blacklist Check
Can Mint?

ls it Proxy?

Can Take Ownership?
Hidden Owner?

Self Destruction?

Auditor Confidence

Overall Audit Result: PASSED

W © f

inspector.lovely.finance

RESULT

0%
0%
Not Detected
Not Detected
0%
Not Detected
Ne
Not Detected
Not Detected
Ne
No
Ne
N
Not Detected
Not Detected
N
N
Not Detected
No
Not Detected

Not Detected

High

Audited by LOVELY INSPECTOR

i LOVELY
L5 INSPECTOR

CODE QUALITY

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts, inherits,
and Interfaces. This is a compact and well written smart contract.

The libraries in Pendle Token are part of its logical algorithm. A library is a different type of smart
contract that contains reusable code. Once deployed on the blockchain (only once), it is assigned a

specific address and its properties/methods can be reused many times by other contracts in the
Pendle Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have helped
to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec commenting style
IS recommended.

DOCUMENTATION

We were given a Pendle Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward. So it is
easy to quickly understand the programming flow as well as complex code logic. Comments are
very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://www.arkhamintelligence.com which
provided rich information about the project architecture and tokenomics.

USE OF DEPENDENCIES

As per our observation, the libraries are used in this smart contract infrastructure that are based
on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

W © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY

!'LD.
L= INSPECTOR

PROJECT WEBSITE PERFORMANCE AUDIT

Browser Timings
Pe rformance Metrlcs ® Redirect Duration ® Connection Duration ® Backend Duration
Oms 126ms 47ms
® Time to First Byte @ First Paint © DOM Interactive Time
173ms 387ms 599ms
©® DOM Content Loaded ® Onload Time o Fully Loaded Time
624ms 1.5s 2.9s
Grade
i i
B Performance Structure
g ‘I
84% 86%
oot * ’”
® First Contentful Paint ® Time to Interactive ® Speed Index web Vltals
i 0
@® Total Blocking Largest Contentful ® Cumulative Layout LCP TBT CLS
Time Paint Shift
1.5s 105ms 0.01
N e
Top Issues
IMPECT AUDIT
Avoid enormous network payloads (LCP) ¥
URL SIZE
o https://d1e09wmOwupqg53.cloudfront.net/arkham/webm/3.webm 12.0MB
e https://d1e09wmOwupqg53.cloudfront.net/arkham/webm/1.webm 9.9MB
o https://d1e09wmOwupg53.cloudfront.net/arkham/webm/2.webm 8.34MB
o https://d1e09wmOwupg53.cloudfront.net/arkham/webm/4.webm 7.09MB
o https://assets.website-files.com/62879326fd745f7489b43224/62a0c38a3350bde261edd2aa_ALERT-transcode.mp4 5.37MB
» https://assets.website-files.com/62879326fd745f7489b43224/62a0c38a3350bde261e4d2aa_ALERT-transcode.mp4 118MB
» https://assets-global.website-
files.com/62879326fd745f7489b43224/62a3a/248e6a2b4/b66bd26¢c_Arkham_pentagon_7_3_1-transcode.mp4 112MB
o https://assets-global.website-files.com/6287/9326fd/45f74890b43224/641e0dc90bc3e0bfb3d910a3_city-bg.webp 321KB

o https://assets-global.website-

files.com/6296255d9030be506dc09bb7/6421cc820a29f76a25e030d9_Screen%20Shot%202023-03-23%20at%202.03.
34%20PM.png

« https://assets-global.website-files.com/62879326fd745f7489b43224/js/arkham.dddSeb7a3.js

297KB

165KB

W © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

!'L'll1_ LOVELY
-2 INSPECTOR

LEVEL OF CRITICALITY

RISK LEVEL DESCRIPTION

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however, they also have
significant impact on smart contract execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix; however, they can’t lead to
tokens lose

Low-level vulnerabilities are mostly related to outdated, unused etc. code
shippets, that can’t have significant impact on execution

Lowest-level vulnerabilities, code style violations and info statements can’t affect
smart contract execution and can be ignored.

W © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

('L'll1 LOVELY
-2 INSPECTOR

AUDIT FINDINGS TABLE

Total Resolved UnResolved Acknowledged

The Arkham (ARKM) - Audit report identifies O issues with varying severity levels,
discovered through manual review and static analysis techniques, alongside
rigorous code reviews, highlighting the need for further investigation and

vulnerability identification.

The smart contract is considered to pass the audit, as of the audit date, if no

high severity or moderate severity issues are found.

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY

N LL’.
L= INSPECTOR

AUDIT FINDINGS

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

No Medium severity vulnerabilities were found.

No Low severity vulnerabilities were found.

No Very Low severity vulnerabilities were found.

inspector.lovely.finance

Audited by LOVELY INSPECTOR

i LOVELY
.51 INSPECTOR

CENTRALIZATION

This smart contract has some functions that can be executed by the Admin
(Owner) only. If the admin wallet's private key is compromised, then it would

create trouble. Following are Admin functions:

ARKM.sol

e pause: The owner can trigger a stop.
e unpause: The owner can return to a normal state.
e mint: Mint a new token by the owner.

e _authorizeUpgrade: The owner can upgrade to a new implementation.

OwnableUpgradeable.sol
e renounce Ownership: Deleting ownership will leave the contract without an owner, removing any owner-only

functionality.

e transferOwnership: The current owner can transfer ownership of the contract to a new account..

UpgradeableBeacon.sol

e upgradeTo: Upgrades the beacon to a new implementation by the owner.

ProxyAdmin.sol

e changeProxyAdmin: Changes the admin of " proxy to newAdmin by the owner.
e upgrade: Upgrades proxy to implementation by the owner.
e upgradeAndCall: Upgrades proxy to implementation and calls a function on the new implementation by the

owner.

inspector.lovely.finance Audited by LOVELY INSPECTOR

i LOVELY
.51 INSPECTOR

TransparentUpgradeableProxy.sol

e admin: Returns the current admin by the Admin.

e implementation: Returns the current implementation by the Admin.

e changeAdmin: Changes the admin of the proxy by the Admin.

e upgradeTo: Upgrade the implementation of the proxy by the Admin.

e upgradelToAndCall: Upgrade the implementation of the proxy, and then call a function from the new implementation

as specified by “data , which should be an encoded function call by the Admin.

Ownable.sol

e renounce Ownership: Deleting ownership will leave the contract without an owner, removing any owner-only

functionality.

e transferOwnership: The current owner can transfer ownership of the contract to a new account..

To make the smart contract 100% decentralized, we suggest renouncing

ownership of the smart contract once its function is completed.

inspector.lovely.finance Audited by LOVELY INSPECTOR

i LOVELY
.51 INSPECTOR

CONCLUSION

We were given a contract code in the form of Etherscan web links. And we
have used all possible tests based on given objects as files. We had not
observed any issues in the smart contracts. So, its good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol,
we provide no such guarantee of future outcomes. We have used all the
latest static tools and manual observations to cover maximum possible test
cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed
with static analysis tools. Smart Contract's high-level description of
functionality was presented in the As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security state of the reviewed smart contract, based on standard audit
procedure scope, is “Secured”.

W © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY

!'LL".
L= INSPECTOR

ADDENDUM

Code Flow Diagram

Arkham Token

IC' UpgradeableBeacon

(A) Address

(C) ProxyAdmin

IBeacon
Ownable

(©)AdminUpgradeabilityProxy

& QisContract()

® sendValue()

¢ functionCall()

® functionCalWith'/alue()

@ QgetAddressSiot()
® G getBooleanSlot() O address _implementation

@ QgetProxylmplementation()

. TransparentUpgradeableProxy
© QugetProxyAdming) P 0y Xy

& QgetBytes32SIot() 2 changeProxyAdmini) O @ _constructor_ ()
i i g =i(a11}) a =) ! .
¢ ':lfur"!ctlnnbtatm .,allg ® Qgetlint256SIot() : __cqnstru::tqr_:_; @ upgrade()
® functionDelegateCall() = o Qimplementation() é' n:iA dCaln
m 4 _verifyCallResult() O upgradeTol) i o "’E'--
8 setimplementationi)

N ™ ‘marant b
(€) ownable \C) TransparentUpgradeableFroxy

ERC1967 FProxy

o & __constructor__()
© admint)

2 implementation()

O changeAdmin()

2 upgradeTol)

0 @upgradeToAndCall()
€ Q_admin()

® _beforeFallback()

. I) /Beacon

@ Qimplementation] : [
Qimy hind Y @ _ constructor_ ()

O Qowner()
O renounceQwnership()
@ transferOwnership()

— *':Cﬁ:'jl BeaconProxy
| C) ERC1967Proxy —

' C :,:' Context Proxy

Proxy ERC1967Upgrade

ERC1967Upgrade o @& __constructor__()

© & constructor_ () ® Q _heacon()
® Q _implementation() ¢ G _implementation()
™ O ® setBeacon()

¢ Q. _msgSender()
® Q_msgData()

ROLLBACHK SLOT
IMPLEMENTATION SLOT
ADMIMN_SLOT

BEACON SLOT

, ‘_ []

i L d .
LT
e e p p— —
ol]] LAl ol |
- = - = -.‘ - =

® O getimplementation()
4 _delegate() 8 =etimplementation()
® Q _implementation() @ upgradeTo()
® _fallback() ® _upgradeToAndCall()
o & _ constructor_ () ® upgradeToAndCallSecure()
® beforeFallback() ® upgradeBeaconToAndCall()
® Q_ getAdmin()
& setAdmint)
® changeAdmin()
& Q_getBeacon()
B setBeacon()

W © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

r'L'll1 LOVELY
-2 INSPECTOR

SECURITY ASSESSMENT REPORT

Slither is a Solidity static analysis framework that uses vulnerability
detectors, displays contract details and provides an APl for writing custom

analyses. It helps developers identify vulnerabilities, improve code
comprehension, and prototype custom analyses quickly. The analysis
includes a report with warnings and errors, allowing developers to quickly
prototype and fix issues.

We did the analysis of the project together. Below are the results.

Slither Log >> ERC1967Proxy.sol

ERC1967Upgrade. upgradeToAndCall(address,bytes,bool) (ERC1967Proxy.sol#429-435) ignores return value by Address.functionDelegate
Call({newImplementation,data) (ERC1967Proxy.sol#433)

ERC1967Upgrade. upgradeToAndCallSecure(address,bytes,bool) (ERC1967Proxy.sol#442-470) ignores return value by Address.functionDe
legateCall(newImplementation,data) (ERC1967Proxy.sol#448)

ERC1967Upgrade. upgradeToAndCallSecure(address,bytes,bool) (ERC1967Proxy.sol#442-470) ignores return value by Address.functionDe
legateCall(newImplementation,abi.encodeWithSignature(upgradeTo(address),oldImplementation)) (ERC1967Proxy.sol#456-462)
ERC1967Upgrade. upgradeBeaconToAndCall(address,bytes,bool) (ERC1967Proxy.sol#478-484) ignores return value by Address.functionDe
legateCall(IBeacon(newBeacon). implementation(),data) (ERC1967Proxy.sol#482)

Reference: https://qgithub.com/crytic/slither/wiki/Detector-Documentation#unused-return

AdminUpgradeabilityProxy.constructor(address,address,bytes).admin (ERC1967Proxy.sol#849) shadows:
- TransparentUpgradeableProxy.admin() (ERC1967Proxy.sol#653-655) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing

Modifier TransparentUpgradeableProxy.ifAdmin() (ERC1967Proxy.sol#636-642) does not always execute

; or revertReference: https:/
/github.com/crytic/slither/wiki/Detector-Documentation#incorrect-modifier

o

Reentrancy in ERC1967Upgrade. upgradeToAndCallSecure(address,bytes,bool) (ERC1967Proxy.sol#442-470):

External calls:

- Address.functionDelegateCall({newImplementation,data) (ERC1967Proxy.sol#448)

- Address.functionDelegateCall(newImplementation,abi.encodewithSignature(upgradeTo(address),oldImplementation)) (ERC1967
Proxy.sol#456-462)

Event emitted aftter the call(s):

- Upgraded(newImplementation) (ERC1967Proxy.sol#468)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY
INSPECTOR

iy

Address.isContract(address) (PENDLE.sol#26-35) uses assembly
- INLINE ASM (PENDLE.sol#332)
Address. verifyCallResult(bool,bytes,string) (PENDLE.sol#171-188) uses assembly
- INLINE ASM (PENDLE.sol#186-183)
PENDLE.getChainId() (PENDLE.sol#1852-1658) uses assembly
- INLINE ASM (PENDLE.sol#10654-1656)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

Address.functionCall(address,bytes) (PENDLE.sol#79-81) is never used and should be removed
Address.functionCallwithValue(address,bytes,uint256) (PENDLE.sol#104-106) 1is never used and should be removed
Address.functionDelegateCall(address,bytes) (PENDLE.sol#153-155) 1is never used and should be removed
Address.functionDelegateCall(address,bytes,string) (PENDLE.sol#163-169) 1is never used and should be removed
Address.functionStaticCall(address,bytes) (PENDLE.sol#129-131) is never used and should be removed
Address.functionStaticCall(address,bytes,string) (PENDLE.sol#139-145) 1is never used and should be removed
Address.sendValue(address,uint256) (PENDLE.sol#53-59) 1is never used and should be removed

SateERC20. safenpprave(IEREEB address,uint256) (PENDLE.sol#479-488) 1is never used and should be removed
SateERC20. safeDecreasehllewance(IERCEB address,uint256) (PENDLE.sol#495-498) 1is never used and should be removed
SafeEHCEB.safeIncreaseAlluwance(IERCEB,address,uintESﬁ} (PENDLE .sol#490-493) 1is never used and should be removed
SafeERC20.safeTransterFrom(IERC20,address ,address ,uint256) (PENDLE.sol#468-470) 1s never used and should be removed
SafeMath.div(uint256,uint256,string) (PENDLE.sol#434-437) is never used and should be removed
SateMath.mod(uint256,uint256) (PENDLE.sol#396-399) 1is never used and should be removed
SafeMath.mod(uint256,uint256,string) (PENDLE.sol#454-457) 1s never used and should be removed
SafeMath.tryAdd(uint256, u1nt255} (PENDLE.sol#268-272) is never used and should be removed
SafeMath.tryDiv(uint256,uint256) (PENDLE.sol#304-307) is never used and should be removed
Safeﬂath.tryNnd(uintEBﬁ,uint25ﬁ} (PENDLE.sol#314-317) 1is never used and should be removed
SafeMath.tryMul(uint256,uint256) (PENDLE.sol#289-297) 1s never used and should be removed
SateMath.trySub(uint256,u1nt256) (PENDLE.sol#279-282) 1s never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Pragma version>=0.6.2<0.8.0 (PENDLE.sol#3) 1is too complex
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Pragma version®0.8.0 (ERC1967Proxy.sol#3) allows old versions
solc-0.8.0 1s not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Low level call in Address.sendValue(address,uint256) (ERC1967Proxy.sol#49-55):
- (success) = recipient.call{value: amount}() (ERC1967Proxy.sol#53)

Low level call in Address.functionCallwithValue(address,bytes,uint256,string) (ERC1967Proxy.sol#116-117):
- (success,returndata) = target.call{value: value}(data) (ERC1967Proxy.sol#115)

Low level call in Address.functionStaticCall(address,bytes,string) (ERC1967Proxy.sol#135-141):
- (success,returndata) = target.staticcall(data) (ERC1967Proxy.sol#139)

Low level call in Address.functionDelegateCall(address,bytes,string) (ERC1967Proxy.s0l#159-165):
- (success,returndata) = target.delegatecall(data) (ERC1967Proxy.sol#163)

Low level call in ProxyAdmin.getProxyImplementation(TransparentUpgradeableProxy) (ERC1967Proxy.sol#730-736):
- (success,returndata) = address(proxy).staticcall(®x5c60dalb) (ERC1967Proxy.sol#733)

Low level call in ProxyAdmin.getProxyAdmin(TransparentUpgradeableProxy) (ERC1967Proxy.sol#745-751):
- (success,returndata) = address(proxy).staticcall(Bxf851a440) (ERC1967Proxy.sol#748)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls

Redundant expression "this (ERC1967Proxy.sol#256)" inContext (ERC1967Proxy.sol#250-259)
Reference: https://qgithub.com/crytic/slither/wiki/Detector-Documentation#redundant-statements

Variable UpgradeableBeacon. implementation (ERC1967Proxy.sol#795) 1s too similar to UpgradeableBeacon.constructor(address).imple
mentation (ERC1967Proxy.sol#806)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar

ERElQE?Pruxy.spl analyzed (13 contracts with 84 Eetecturs], 40 result(s) found

inspector.lovely.finance Audited by LOVELY INSPECTOR

('L'll1 LOVELY
-2 INSPECTOR

SOLIDITY STATIC ANALYSIS

Static code analysis is used to identify many common coding problems
before a program is released. It involves examining the code manually or

using tools to automate the process. Static code analysis tools can
automatically scan the code without executing it.

ARKM.sol

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases.
Additionally static analysis modules do not parse inline Assembly, this can lead
to wrong analysis results.

more

Pos: 28/7:12:

Low level calls:

Use of "delegatecall™: should be avoided whenever possible. External code, that

IS called can change the state of the calling contract and send ether from the
caller's balance. If this is wanted behaviour, use the Solidity library feature if
possible.

more

Pos: 7/ /9:50:

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY

N L'L?.
L= INSPECTOR

Gas costs:

Gas requirement of function ARKM.mint is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops In your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 1437:4:

(Gas costs:

Gas requirement of function ARKM.pause is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid

loops In your functions or actions that modify large areas of storage (this

includes clearing or copying arrays in storage)
Pos: 1429:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
iInvalid input or a failing external component.

more

Pos: 1313:12:

inspector.lovely.finance Audited by LOVELY INSPECTOR

i LOVELY
LLy INSPECTOR

ERC1967Proxy.sol

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally
static analysis modules do not parse inline Assembly, this can lead to wrong

analysis results.
more
Pos: 269:8:

Low level calls:

Use of "delegatecall”: should be avoided whenever possible. External code, that
Is called can change the state of the calling contract and send ether from the

caller's balance. If this is wanted behaviour, use the Solidity library feature If
possible.
more

Pos: 163:50:

(Gas costs:

(Gas requirement of function TransparentUpgradeableProxy.admin is infinite: If
the gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops In your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 653:4:

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY

N L'L?.
L= INSPECTOR

ERC1967Proxy.sol

(as costs:

Fallback function of contract AdminUpgradeabilityProxy requires too much gas
(infinite). If the fallback function requires more than 2300 gas, the contract
cannot receive Ether.

Pos: 309:4:

(Gas costs:

Fallback function of contract BeaconProxy requires too much gas (infinite). If the
fallback function requires more than 2300 gas, the contract cannot receive

Ether.
Pos: 309:4:

Similar variable names:

UpgradeableBeacon.(address) : Variables have very similar names
"_implementation” and "implementation_". Note: Modifiers are currently not
considered by this static analysis.

Pos: 80/7/:27:

No return:

Proxy._implementation(): Defines a return type but never explicitly returns a

value.
Pos: 293:4:

inspector.lovely.finance Audited by LOVELY INSPECTOR

i LOVELY
L5y INSPECTOR

ERC1967Proxy.sol

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: /49:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance

(apart from a bug in your code). Use "require(x)" if X can be false, due to e.q.
invalid input or a failing external component.

more

Pos: 840:8:

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY

n Lll?'
L5 INSPECTOR

COMPLIANCE ANALYSIS

Linters are the utility tools that analyze the given source code and report
programming errors, bugs, and stylistic errors. For the Solidity language,
there are some linter tools available that a developer can use to improve the
quality of their Solidity contracts.

ARKM.sol

inspector.lovely.finance Audited by LOVELY INSPECTOR

(i LOVELY
L

INSPECTOR

inspector.lovely.finance Audited by LOVELY INSPECTOR

i LOVELY
L-y INSPECTOR

ERC1967Proxy.sol

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY
INSPECTOR

{18,

inspector.lovely.finance Audited by LOVELY INSPECTOR

LOVELY

%
-2 INSPECTOR

SOFTWARE ANALYSIS RESULT

This software reported many false positive results and some are
iInformational issues. So, those issues can be safely ignored.

inspector.lovely.finance Audited by LOVELY INSPECTOR

i1 LOVELY
L5 INSPECTOR

INSPECTOR LOVELY
INFO

Website: Inspector.lovely.finance

Telegram community: t.me/inspectorlovely

Twitter: twitter.com/InspectorLovely

