AUDITED BY

|_|.I LOVELY
- INSPECTOR

SMART CONTRACT
SECURITY AUDIT

FLOKI

)

e

f'Li.I'1 LOVELY
LE1) INSPECTOR

TABLE OF CONTENTS

Table of Contents

Disclaimer 3
Audit Scope 4
Proposed Smart Contract Features 5
Audit Summary 6
Key Technical Metrics g
Business Risk Analysis 8
Code Quality 9
Documentation 9
Use of Dependencies 9
Project Website Performance Audit 10
Level of Criticality 10
Audit Findings Table 1
Audit Findings 12
Centralization 13
Conclusion 14
Addendum
e Logic Diagram 15
e Security Assessment Report 16
¢ Solidity Static Analysis 18
e« Compliance Analysis 20
Software Analysis Result 20
LOVELY INSPECTOR Info 21

L MO

f'Li"1_ LOVELY
LE1) INSPECTOR

DISCLAIMER

This is a comprehensive report based on our automated and manual
examination of cybersecurity vulnerabilities and framework flaws of the
project's smart contract. Reading the full analysis report is essential to build
your understanding of project’s security level. It is crucial to take note, though
we have done our best to perform this analysis and report, that you should not
rely on the our research and cannot claim what it states or how we created it.
Before making any judgments, you have to conduct your own independent
research. We will discuss this in more depth in the following disclaimer - please
read it fully. DISCLAIMER: You agree to the terms of this disclaimer by reading
this report or any portion thereof. Please stop reading this report and remove
and delete any copies of this report that you download and/or print if you do
not agree to these conditions. Scan and verify report's presence in the GitHub
repository by a qr-code on the title page. This report is for non-reliability
information only and does not represent investment advice. No one shall be
entitled to depend on the report or its contents, and Inspector Lovely and its
affiliates shall not be held responsible to you or anyone else, nor shall Inspector
Lovely provide any guarantee or representation to any person with regard to
the accuracy or integrity of the report. Without any terms, warranties or other
conditions other than as set forth in that exclusion and Inspector Lovely
excludes hereby all representations, warrants, conditions and other terms
(including, without limitation, guarantees implied by the law of satisfactory
quality, fitness for purposes and the use of reasonable care and skills). The
report is provided as "as is" and does not contain any terms and conditions.
Except as legally banned, Inspector Lovely disclaims all responsibility and
responsibilities and no claim against Inspector Lovely is made to any amount or
type of loss or damages (without limitation, direct, indirect, special, punitive,
consequential or pure economic loses or losses) that may be caused by you or
any other person, or any damages or damages, including without limitations
(whether innocent or negligent). Security analysis is based only on the smart
contracts. No applications or operations were reviewed for security. No product
code has been reviewed.

inspector.lovely.finance Audited by LOVELY INSPECTOR

f'L"1 LOVELY
LE1) INSPECTOR

AUDIT SCOPE

Code Review and Security Analysis Report for

Name Floki Token Coin Smart Contract

Platform Ethereum

Language Solidity

File FLOKI.sol

Ethereum Code 0xcf0c122c6b73ff809c693db761e7baebe62bbaze
Audit Date November 8th, 2023

¥ f

inspector.lovely.finance Audited by LOVELY INSPECTOR

f'Li|'1_ LOVELY
LE1) INSPECTOR

'S

PROPOSED SMART CONTRACT
FEATURES

Claimed Feature

Detail Our Observation

Validated

Tokenomics:

Name: FLOKI
« Symbol: FLOKI
Decimals: 9

Total Supply: 10 Tillion
Ownership control: Validated

« Set the tax handler address.

Set the treasury handler address.
« Current owner can transfer the ownership.
» Owner can renounce ownership.

¥ f

inspector.lovely.finance Audited by LOVELY INSPECTOR

_f'i_l"l_ LOVELY
LL1) INSPECTOR

AUDIT SUMMARY

According to the standard audit assessment, Customer " s solidity based smart
contracts are “Secured”. Also, these contracts contain owner control, which
does not make them fully decentralized.

Secure

Insecure Poor Secured Well-Secured

We used various tools like Slither, Solhint and Remix IDE. At the same time this
finding is based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section. General
overview is presented in AS-IS section and all identified issues can be found in the
Audit overview section.

We found O critical, 0 high, 0 medium and 0 low, and 0 very low level
issues.

Investors Advice: Technical audit of the smart contract does not guarantee the
ethical nature of the project. Any owner controlled functions should be executed
by the owner with responsibility. All investors/users are advised to do their due
diligence before investing in the project.

¥y © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

r'L"1 LOVELY
LE1) INSPECTOR

KEY TECHNICAL METRICS

MAIN CATEGORY SUBCATEGORY RESULT
Solidity version is not specified Passed
Solidity version is too old Passed
Integer overflow/underflow Passed
Function input parameters lack check Passed
Function input parameters check bupass Passed
Function access control lacks management Passed
Contract
Programming Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generationfuse vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Function visibility not explicitly declared Passed
Code Var. storage location not explicitly declared Passed
Specification Use keywords/functions to be deprecated Passed
Unused code Passed
"Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
Gas Optimization
High consumption 'storage’ storage Passed
Assert() misuse Passed
The maximum limit for mintage is not set Passed
Business Risk “Short Address” Attack Passed
"Double Spend” Attack Passed

Overall Audit Result: PASSED

inspector.lovely.finance Audited by LOVELY INSPECTOR

r'L"T LOVELY
LE1) INSPECTOR

BUSINESS RISK ANALYSIS

CATEGORY RESULT

® Buy Tax 0%

® Sell Tax 0%

@ Cannot Buy Not Detected
® Cannot Sell Not Detected
@ Max Tax 0%

® Modify Tax Not Detected
® Fee Check No

® Is Honeypot Not Detected
[] Trading Cooldown Mot Detected
® Can Pause Trade? No

® Pause Transfer? No

® Max Tax? No

® Isit Anti-whale? No

® Is Anti-bot? Not Detected
® IsitaBlaocklist? Not Detected
® Blacklist Check No

@ Can Mint? No

® IsitProxy? No

[] Can Take Ownership? Yes

[] Hidden Owner? Not Detected
® Self Destruction? Not Detected
® Auditor Confidence High

Overall Audit Result: PASSED

L _BOR

inspector.lovely.finance Audited by LOVELY INSPECTOR

f'Li|'1_ LOVELY
LE1) INSPECTOR

CODE QUALITY

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts, inherits
and Interfaces. This is a compact and well written smart contract.

The libraries in Floki Token are part of its logical algorithm. A library is a different type of smart
contract that contains reusable code. Once deployed on the blockchain (only once), it is assigned a
specific address and its properties [methods can be reused many times by other contracts in the
Floki Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have helped
to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec commenting style
is recommended.

DOCUMENTATION

We were given a Floki Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward. So it is
easy to quickly understand the programming flow as well as complex code logic. Comments are
very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://floki.com which provided rich
information about the project architecture and tokenomics.

USE OF DEPENDENCIES

As per our observation, the libraries are used in this smart contract infrastructure that are based
on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

¥ O f

inspector.lovely.finance Audited by LOVELY INSPECTOR

r'L"T LOVELY
LE1) INSPECTOR

PROJECT WEBSITE PERFORMANCE AUDIT

Browser Timings
Performance Metrics

@ Redirect Duration @ Connection Duration @ Backend Duration
Oms 102ms 49ms
® Time to First Byte # First Paint ® DOM Interactive Time
151ms 647ms 17s
& DOM Content Loaded @& Onioad Time ® Fully Loaded Time
1.8s 2.5s 2.6s
Grade
Performance Structure
B L] e
| 8e% 755
@ First Contentful Paint ® Time to Interactive ® Speed | Web Vitals
& Total Blocking & Largest Contentful & Cumulativie Layout Lce TET CLS
Time Paint Shift
802ms 260ms o
IMPECT AUDIT
- Enable Keep-Alive (FCP) (LCP) X
URL SIZE

= https://assets-global website-files.com/62c5b02ab108966a252dfe8e/6317b5fed6eBac88dSdbealf_ad-preview-2-transcode.mpd 2.21MB

« hitps://uce50607109bbd50e34967796173.dLdropboxusercontent.com/cd/0/inline/CHbgqCk- 1.91MB
YUbeNZIFrta_JsWiawVxWYqGnTvzWM2ctP2ZDHKF_PriKx8-XRmy Y Bpk9zVqWbdigpKefHdbIXOVEUS_QITUASWCSNvnoCx1LhYBDMp-
BJIwIBzMWxL7dQNIXjvZLefDyxk1gi0_YeyWzmevF (file

» https://; global. website-files.com/631652c1d3e052ae06f4888b/64897b4aee50c9aB03650f11 _image.png AB5KB
« http: global.website-files.com/631652c1d3e052ae064888b/6308953bf43c574e97055805_Flokifi%20Web%20imagejpd qg7kp
= hitp: global.website-files.com/631652c1d3e052ae064888b/63ac4e14d827c 568a046cd6f_ad-preview,webp 102KB
« https://: lobal.website-files.com/62c5b02ab108966a252dfeBe/js/webflow.862f2aed0 js 82.7KB
- Avoid an excessive DOM size (TBT) 2
TOTAL DOM ELEMENTS 3642
MAXIMUMDOMDEPTH V.TIMEFILTER-LIST > DIV.WIDTH-100 > LABEL.W-CHECKBOX > DIV.W-CHECKBOX-INPUT il

<DIV CLASS="W-CHECKBOX-INPUT W-CHECKBOX-INPUT--INPUTTYPE-CUSTOM RADIC_SWITCH">

MAXIMUM CHILD VALHALLA FREE TO PLAY ON TESTNET! FOLLOW THESE STEPS. 1. ADD METAMASK BROWSERE... <Dl 42
S CLASS="LIGHTBOX_RICH-TEXT TRANSLATE W-RICHTEXT">

Level of Criticality

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however, they also have
significant impact on smart contract execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix; however, they can’t lead to
tokens lose

Low-level vulnerabilities are mostly related to outdated, unused etc. code
snippets, that can't have significant impact on execution

Lowest-level vulnerabilities, code style and info its can't affect

smart contract execution and can be ignored.

inspector.lovelu.finance Audited by LOVELY INSPECTOR

_r'Li_I'T_ LOVELY
LE1) INSPECTOR

AUDIT FINDINGS TABLE

Total Resolved UnResolved Acknowledged

o
(=]
o
o

The Maveric Token - Audit report identifies O issues with varying severity levels,
discovered through manual review and static analysis techniques, alongside
rigorous code reviews, highlighting the need for further investigation and

vulnerability identification.

The smart contract is considered to pass the audit, as of the audit date, if no

high-severity or moderate-severity issues are found.

inspector.lovelu.finance Audited by LOVELY INSPECTOR

f'L"1 LOVELY
LE1) INSPECTOR

AUDIT FINDINGS

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

No Medium severity vulnerabilities were found.

No Low severity vulnerabilities were found.

No Very Low severity vulnerabilities were found.

inspector.lovelu.finance Audited by LOVELY INSPECTOR

f'L"1 LOVELY
LE1) INSPECTOR

CENTRALIZATION

This smart contract has some functions which can be executed by the Admin
(Owner) only. If the admin wallet private key would be compromised, then it

would create trouble. Following are Admin functions:

Floki.sol

e setTaxHandler: Tax Handler address can be set by the owner.

» setTreasuryHandler: Treasury Handler address can be set by the owner.

Ownable.sol

» renounce Ownership: Deleting ownership will leave the contract without an owner, removing any owner-only
functionality.

» transferOwnership: The current owner can transfer ownership of the contract to a new account.

To make the smart contract 100% decentralized, we suggest renouncing

ownership of the smart contract once its function is completed.

inspector.lovelu.finance Audited by LOVELY INSPECTOR

f'Li|'1_ LOVELY
LE1) INSPECTOR

CONCLUSION

We were given a contract code in the form of Etherscan web links. And we
have used all possible tests based on given objects as files. We had not
observed any issues in the smart contracts. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol,
we provide no such guarantee of future outcomes. We have used all the
latest static tools and manual observations to cover maximum possible test
cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed
with static analysis tools. Smart Contract's high-level description of
functionality was presented in the As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security state of the reviewed smart contract, based on standard audit
procedure scope, is “Secured”.

¥ © f

inspector.lovely.finance Audited by LOVELY INSPECTOR

f'Li:l LOVELY
LE1) INSPECTOR

ADDENDUM

Code Flow Diagram

Floki Token

IERC2

rnanceToken

DOMAIN_TYPEHASH
2 DELEGATION TYPEHASH
taxHandler
1 treasuryHandler

(I) iTreasuryHandler

' __constructor__()

0...nlame=‘,) A @ beforeTransferHandler()
, Qude 'malls > ' @ afterTransferHandler()
> QotalSupply
» QbalanceOf()
' transfer()
> Quallowan
' approve(
2 transferFrom
2 increaseAllowal)
' decreaseAllowance()
© delegate()

© setTaxHandler()
' setTreasuryHandler()
_delegate()

@ QtotalSupply(
© QpbalanceOf() address _owner

transfer() VotesAtBlock() o __constructor__()

-:;Ztl;v s . Qowner()

: @ renounceOwner:

@ transferFrom(@ transferOwnership()
B _setOwner()

inspector.lovely.finance Audited by LOVELY INSPECTOR

L LOVELY
_J INSPECTOR

SECURITY ASSESSMENT REPORT

Slither is a Solidity static analysis framework that uses vulnerability
detectors, displays contract details and provides an API for writing custom
analyses. It helps developers identify vulnerabilities, improve code
comprehension, and prototype custom analyses quickly. The analysis
includes a report with warnings and errors, allowing developers to quickly
prototype and fix issues.

We did the analysis of the project together. Below are the results.

Slither Log >> FLOKlI.sol

FLOKI. writeCheckpoint{address ,uint32,uint224 ,uint224) (FLOKI.sol#346-362) uses a dangerous strict equalit
- nCheckpoints > 8 && checkpnmts[dElEqatee][nLheckpu\nts - 1].blockNumber == blockNumber (FLOKI. snlaBSﬂ}
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation@dangerous-strict-equalities

Reentrancy in FLOKI. transfer{address,address,uint256) (FLOKI.sol#377-467):

External calls:

- treasuryHandler.beforeTransferdandler(from, to,amount) (FLOKI.sol#387)

State variables written after the call(s):
_balances[from] -= amount (FLOKI.sol#392)

FLOKI. balances (FLOKI.sol#118) can be used in cross function reentrancies:

- FLOKI._delegate|address,address) (FLOKI.sol#386-314)

- FLOKI. transfer{address,address,uint256) {FLOKI.sol#377-407)

- FLOKI.balanceof({address) (FLOKI.sol#173-175)

- FLOKI.constructor{string,string,address,address} (FLOKI.sol#148-155)
_balances[to] += taxedAmount (FLOKI.sol#393)

FLOKI. balances (FLOKI.sol#118) can be used in cross function reentrancies:

- FLOKI. delegate{address,address) (FLOKI.sol#386-314)

- FLOKI._ transfer({address,address,uint256) (FLOKI.sol#377-407)

- FLOKI.balanceof(address) (FLOKI.sol#173-175)

- FLGKI.Lnnstructor[str\ng,str\n?.aﬁﬁress,address] {FLOKI.sol#148-155)
_balances[address(treasuryHandler)] += tax (FLOKI.sol#397)

FLOKI. balances (FLOKI.sol#118) can be used in cross function reentrancies:

- FLOKI. delegate{address,address) (FLOKI.sol#306-314)

- FLOKI. transfer(address,address,unt256) (FLOKI.sol#377-407)

- FLOKI.balance0f(address) (FLOKI.sol#173-175)

- FLOKI.constructor{string,string,address,address} (FLOKI.sol#148-155)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1

FLOKI.allowance(address ,address) .owner (FLOKI.sol#182) shadows:
- Ownable.owner({) (FLOKI.sol#84-86) (function)
FLOKI. approve{address,address,uint256).owner (FLOKI.sol#365) shadows:
- Ownable.owner() (FLOKI.sol#84-86) (function)
Reference; https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing

Reentrancy in FLOKI. transfer(address,address,uint256) (FLOKI.sol#377-407):
External calls:
- treasuryHandler.beforeTransferHandler(from, to,amount) (FLOKI.sol#387)
State variables written after the call{s):
_moveDelegates(delegates[from],delegates[to],uint224(taxedAmount }) (FLOKI.sol#394)
- checkpoints[delegatee][nCheckpoints - 1].votes = newVotes (FLOKI.sol#355)
checkpoints[delegatee][nCheckpoints] = Checkpoint({blockNumber ,newVotes) (FLOKI.sol#357)
_moveDelegates|delegates[from],delegates[address(treasuryHandler)],uint224(tax)) (FLOKI.sol#399)
- checkpoints[delegatee][nCheckpoints - 1].votes = newVotes (FLOKI.sol#355)
checkpoints[delegatee][nCheckpoints] = Checkpoint{blockNumber ,newVotes) (FLOKI.sol#357)
moveDelegates(delegates[from],delegates[to], ,uint224(taxeddmount)) 1FLL}K1.&0‘.!394|
- numCheckpoints[delegatee] = nrhnckpnunts + 1 (FLOKI.sol#358)
_moveDelegates(delegates[from],delegates[address(treasurydandler)],uint224(tax)) (FLOKI.sol®399)
- numCheckpoints[delegatee] = nCheckpoints + 1 (FLOKI.sol#358)
Resntrancy in FLOKI.transferFrom{address,address,uint256) (FLOKI.sol#191-208):
External calls:
_transfer({sender,recipient,amount) (FLOKI.sol#196)
- treasuryHandler .beforeTransferdandler{from,to,amount) (FLOKI.sol®387)
- treasuryHandler.afterTransferdandler(from,to,amount) (FLOKI.sol#484)
State variables written after the call(s):
_approve({sender, msgSender(),currentAllowance - amount) (FLOKI.sole204)
- _allowances[owner][spender] = amount (FLOKI.sol#372)
Reference: https://github,com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2

inspector.lovely.finance Audited by LOVELY INSPECTOR

f'L"l LOVELY
LE1) INSPECTOR

Reentrancy in FLOKI. transfer(address,address,uint256) (FLOKI.sol#377-487):
External calls:
- treasuryHandler.beforeTransferdandler{from,to,amount) (FLOKI.sol#387)
Event emitted after the callis):
- Delegatevotes(hangedidele?atee.olqutes.neuVotes) (FLOKI.sol#361)
- _moveDelegates(delegates[from],delegates[address(treasurydandler)],uint224(tax)) (FLOKI.sol#399)
- Delegatchtes(hanged!dele?atee.cidVUtes.nechtes) (FLOKI.sol#361)
_moveDelegates(delegates[from],delegates[to],uint224(taxedamount)) (FLOKI.sol#394)
- Transfer(from,address(treasurydandler),tax) (FLOKI.sol#401)
Reentrancy in FLOKI. transfer(address,address,uint256) (FLOKI.sol#377-407):
External calls:
- treasuryHandler.beforeTrans ferdandler(from, to,amount) (FLOKI.sol#387)
- treasuryHandler.afterTransferdandler(from,to,amount) (FLOKI.sol#404)
Event emitted after the call(s):
- Transfer(from,to,taxedAmount) (FLOKI.sol#406)
Reentrancy in FLOKI.transferFrom{address,address,uint256) (FLOKI.sol#191-208):
External calls:
- _transfer(sender,recipient,amount) (FLOKI.sol#196)
- treasuryHandler.beforeTransferdandler{from,to,amount) (FLOKI.sol#387)
- treasuryHandler.afterTransfertandler(from,to,amount) (FLOKI.sol#404)
Event emitted after the call(s):
- Approval(owner,spender,amount) (FLOKI.sol#374)
- _approve(sender, msgSender(),currentAllowance - amount) (FLOKI.sol#204)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3

FLOKI.delegateBySig(address,uint256,uint256,uint8,bytes32,bytes32) (FLOKI.sol#233-253) uses timestamp for comparisons
Dangerous comparisons:

- require{bool,string)(block.timestamp <= expiry,FLOKI:delegateBySig:EXPIRED_SIGNATURE: Received signature has expired.)
(FLOKI.sol#249)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp

Context. msgDatal) (FLOKI.sol#78-72) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation®dead-code

Pragma version"0.8.8 (FLOKI.sol#3) allows old versions
solc-0.8.8 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

FLOKI. name (FLOKI.sol#136) should be immutable

FLOKI._ symbol (FLOKI.sol#138) should be immutable

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation®state-variables-that-could-be-declared-immutable
FLOKI.sol inilyxad (7 contracts with 84 dutuctnr:). 15 result(s) found

inspector.lovely.finance Audited by LOVELY INSPECTOR

!'L"l_ LOVELY
LE1) INSPECTOR

SOLIDITY STATIC ANALYSIS

Static code analysis is used to identify many common coding problems
before a program is released. It involves examining the code manually or
using tools to automate the process. Static code analysis tools can
automatically scan the code without executing it.

FLOKI.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
FLOKI._transfer(address,address,uint256): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 377:4:

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to
a certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 249:16:

Gas costs:

Gas requirement of function FLOKIl.delegateBySig is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 233:4:

inspector.lovely.finance Audited by LOVELY INSPECTOR

!'LL'l LOVELY
LE1) INSPECTOR

ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more

Pos: 165:4:

Constant/View/Pure functions:

ITreasuryHandler.afterTransferHandler(address,address,uint256) : Potentially
should be constant/Nview/pure but is not. Note: Modifiers are currently not
considered by this static analysis.

more

Pos: 57:4:

Similar variable names:

FLOKI.(string,string,address,address) : Variables have very similar names
"_name" and "name_". Note: Modifiers are currently not considered by this
static analysis.

Pos: 146:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 385:8:

Data truncated:

Division of integer values yields an integer value again. That means eg. 10/
100 = 0 instead of 0.1 since the result is an integer again. This does not hold
for division of (only) literal values since those yield rational constants.

Pos: 277:41.:

inspector.lovely.finance Audited by LOVELY INSPECTOR

fLL'l LOVELY
LE1) INSPECTOR

COMPLIANCE ANALYSIS

Linters are the utility tools that analyze the given source code and report
programming errors, bugs, and stylistic errors. For the Solidity language,
there are some linter tools available that a developer can use to improve the
quality of their Solidity contracts.

FLOKI.sol

SOFTWARE ANALYSIS RESULT

These software reported many false positive results and some are
informational issues. So, those issues can be safely ignored.

inspector.lovely.finance Audited by INSPECTOR LOVELY

AUDITED BY ‘ : 4

ALY LoveLy —
5~ INSPECTOR

LOVELY INSPECTOR
INFO

Website: Inspector.lovely.finance

Telegram community: t.me/inspectorlovely

Twitter: twitter.com/InspectorLovely

