<, INSPECTOR
¥ LOVELY

SMART CONTRACT
SECURITY AUDIT

MEMECOIN




<, INSPECTOR
¥ LOVELY

TABLE OF CONTENTS

Table of Contents 2
Disclaimer 3
Audit Scope 4
Proposed Smart Contract Features 5
Audit Summary 6
Key Technical Metrics 7
Code Quality 8
Documentation 8
Use of Dependencies 8
AS-1S Overview 9
Project Website Performance Audit n
Level of Criticality 1
Audit Findings 12
Centralization 13
Conclusion 14

e Logic Diagram 15

e Security Assessment Report 16

s Solidity Static Analysis 18

s Compliance Analysis 20
Software Analysis Result 21
INSPECTOR Lovely Info 22

L _BOR;



<%, INSPECTOR
43 LOVELY

DISCLAIMER

This is a comprehensive report based on our automated and manual
examination of cybersecurity vulnerabilities and framework flaws of the
project’'s smart contract. Reading the full analysis report is essential to build
your understanding of project’s security level. It is crucial to take note, though
we have done our best to perform this analysis and report, that you should not
rely on the our research and cannot claim what it states or how we created it.
Before making any judgments, you have to conduct your own independent
research. We will discuss this in more depth in the following disclaimer - please
read it fully. DISCLAIMER: You agree to the terms of this disclaimer by reading
this report or any portion thereof. Please stop reading this report and remove
and delete any copies of this report that you download and/or print if you do
not agree to these conditions. Scan and verify report’s presence in the GitHub
repository by a gr-code on the title page. This report is for non-reliability
information only and does not represent investment advice. No one shall be
entitled to depend on the report or its contents, and Inspector Lovely and its
affiliates shall not be held responsible to you or anyone else, nor shall Inspector
Lovely provide any guarantee or representation to any person with regard to
the accuracy or integrity of the report. Without any terms, warranties or other
conditions other than as set forth in that exclusion and Inspector Lovely
excludes hereby all representations, warrants, conditions and other terms
(including, without limitation, guarantees implied by the law of satisfactory
quality, fitness for purposes and the use of reasonable care and skills). The
report is provided as "as is" and does not contain any terms and conditions.
Except as legally banned, Inspector Lovely disclaims all responsibility and
responsibilities and no claim against Inspector Lovely is made to any amount or
type of loss or damages (without limitation, direct, indirect, special, punitive,
consequential or pure economic loses or losses) that may be caused by you or
any other person, or any damages or damages, including without limitations
(whether innocent or negligent). Security analysis is based only on the smart
contracts. No applications or operations were reviewed for security. No product
code has been reviewed.

inspector.lovely.finance Audited by INSPECTOR LOVELY



<, INSPECTOR
¥ LOVELY

AUDIT SCOPE

N Code Review and Security Analysis Report for

e Memecoin Coin Smart Contract

Platform Ethereum

File Memecoin.sol

File MD5 Hash 143C43BEO550CD5EB39572F2FF8C4D77

Smart Contract Code 0xb131f4a55907b10d1f0a50d8ab8fa09ec342cd74

Audit Date November 8th, 2023 I
7

L _BOR

inspector.lovely.finance Audited by INSPECTOR LOVELY




<, INSPECTOR
¥ LOVELY

PROPOSED SMART CONTRACT

FEATURES

Claimed Feature
Detail

Tokenomics:

« Name: Memecoin
« Symbol: MEME
Decimals: 18

Total Supply: 69 Billion

Our Observation

Validated

Owner Control:

+ The new TokenPool address can be set by the owner
« Current owner can transfer the ownership.

« Owner can renounce ownership

¥y O f

inspector.lovely.finance

Validated

Audited by INSPECTOR LOVELY



<, INSPECTOR
% LOVELY

AUDIT SUMMARY

According to the standard audit assessment, the Customer " s solidity-based
smart contracts are “Secured”. Also, these contracts contain owner control,
which does not make them fully decentralized.

Well-Secured
Insecure Poor Secured Secure A

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this
finding is based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit Overview section. The
general overview is presented in the AS-1S section and all identified issues can be
found in the Audit overview section.

We found O critical, 0 high, 0 medium and 0 low, and 3 very low-level
issues.

Investors Advice: Technical audit of the smart contract does not guarantee the
ethical nature of the project. Any owner-controlled functions should be executed
by the owner with responsibility. All investors/users are advised to do their due
diligence before investing in the project.

L _BOR;

inspector.lovely.finance Audited by INSPECTOR LOVELY




%, INSPECTOR
3 LOVELY

KEY TECHNICAL METRICS

MAIN CATEGORY SUBCATEGORY RESULT
Solidity version is not specified Passed
Solidity version is too old Moderated
Integer overflow/underflow Passed
Function input parameters lack check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Contract
Programming Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability Passed
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Moderated
Function visibility not explicitly declared Passed
Code Var. storage location not explicitly declared Passed
Specification Use keywords/functions to be deprecated Passed
Unused code Passed
“Out of Gas” Issue Passed
High consumption “for/while’ loop Passed
Gas Optimization
High consumption ‘storage’ storage Passed
Assert() misuse Passed
The maximum limit for mintage is not set Passed
Business Risk “Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

inspector.lovely.finance Audited by INSPECTOR LOVELY



<%, INSPECTOR
Y% LOVELY

CODE QUALITY

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts, inherits,
and Interfaces. This is a compact and well-written smart contract.

The libraries in Memecoin are part of its logical algorithm. A library is a different type of smart
contract that contains reusable code. Once deployed on the blockchain (only once), it is assigned a
specific address and its properties/methods can be reused many times by other contracts in the

Memecoin.

The EtherAuthority team has not provided scenario and unit test scripts, which would have helped
to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec commenting style
is recommended.

DOCUMENTATION

We were given a Memecoin smart contract code in the form of an Etherscan web link.
As mentioned above, code parts are well commented on. and the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

USE OF DEPENDENCIES

As per our observation, the libraries are used in this smart contract infrastructure that are based
on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

¥y O f

inspector.lovely.finance Audited by INSPECTOR LOVELY




<, INSPECTOR
¥ LOVELY

AS-1S OVERVIEW

Functions
SL. FUNCTIONS TYPE OBSERVATION CONCLUSION
1 constructor write Passed No Issue
9 permit write Passed No Issue
3 setTokenPool external access only Owner No Issue
4 permit write Passed No Issue
5 nonces read Passed No Issue
6 DOMAIN_SEPARATOR external Passed No Issue
7 _useNonce internal Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue
10 decimals read Passed No Issue
1 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 allowance read Passed No Issue
15 approve write Passed No Issue
16 transferFrom write Passed No Issue
17 increaseAllowance write Passed No Issue
18 decreaseAllowance write Passed No Issue
19 _transfer internal Passed No Issue
20 _mint internal Passed No Issue
21 _burn internal Passed No Issue
22 _approve internal Passed No Issue
23 _spendAllowance internal Passed No Issue
24 _beforeTokenTransfer internal Passed No Issue
25 _afterTokenTransfer internal Passed No Issue
26 onlyOwner modifier Passed No Issue
a7 owner write Passed No Issue
28 _checkOwner internal Passed No Issue
29 renounceOwnership write access only Owner No Issue

L _BOR;

inspector.lovely.finance Audited by INSPECTOR LOVELY




%, INSPECTOR
3 LOVELY

AS-1IS OVERVIEW

Functions
SL. FUNCTIONS TYPE OBSERVATION CONCLUSION
30 transferOwnership write access only Owner No Issue
31 _transferOwnership internal Passed No Issue
39 _domainSeparatorV4 internal Passed No Issue
33 _buildDomainSeparator read Passed No Issue
34 _hashTypedDataV4 internal Passed No Issue
35 eip712Domain read Passed No Issue

L _BOR;

inspector.lovely.finance Audited by INSPECTOR LOVELY




<, INSPECTOR
¥ LOVELY

PROJECT WEBSITE PERFORMANCE AUDIT

Performance Metrics Browser Timings
® Redirect Duration @ Connection Duration @ Backend Duration
Oms 44ms 35ms
@ Time to First Byte @ First Paint ® DOM Interactive Time
79ms 102ms 334ms
® DOM Content Loaded @ Onload Time ® Fully Loaded Time
334ms 729ms 2.5s
729ms Grade
( A Performance Structure |
—— L
89% 100%
@ First Contentful Paint @ Time to Interactive ® Speed Index .
Web Vitals
L] Tpta\ Blocking Largest Contentful @ Cumulative Layout "
Time Paint Shift s e cLs
729ms 242ms 0
Top Issues
IMPECT AUDIT
Reduce Java Script execution time (TBT) 829ms spent executing JavaScript v ‘
URL TOTAL SCRIPT SCRIPT PARSE
CPU TIME EVALUATION
«» https://www.memecoin.org/ next/static/chunks/pages/ app-02245f6a6038b5b7.0 6.65 247ms 17ms
= Unattributable 388ms 10ms Orns
= https://www.memecoin.org/ next/stalm/chunks/3732.6bc2d5f2afa61747.0 256ms 228ms 8ms
« https://www.memecoin.org/ nexUstaticichunks/framework-f29e4Sae95caeSaajs 231ms 184ms ms
94ms 7ms Orns

« https://www.memecoin.orgl
= https://www.memecoin.org/ nexUstatic/chunks/pages/claim-2cea65b67a33d3b4.0

= https://www.memecoin.org/ nexUstalm/chunks/6221.75¢0b80ef624b6131.0

67ms 64ms 3ms
S54ms 47ms Bms

Level of Criticality
RISK LEVEL DESCRIPTION

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however, they also have a
significant impact on smart contract execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can't lead to tokens lose

Low-level vulnerabilities are mostly related to outdated, unused etc. code
snippets, that can't have significant impact on execution

Lowest-level vulnerabilities, code style violations, and info statements can’t
affect smart contract execution and can be ignored.

inspector.lovely.finance Audited by INSPECTOR LOVELY



<, INSPECTOR
¥ LOVELY

AUDIT FINDINGS

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

No Medium severity vulnerabilities were found.

No Low severity vulnerabilities were found.

inspector.lovely.finance

Audited by INSPECTOR LOVELY




%, INSPECTOR
3 LOVELY

CENTRALIZATION

This smart contract has some functions that can be executed by the Admin
(Owner) only. If the admin wallet's private key is compromised, then it would

create trouble. Following are Admin functions:

Memecoin.sol

« setTokenPool: The new TokenPool address can be set by the owner.

Ownable.sol

e checkOwner: Throws if the sender is not the owner.
« renounce Ownership: Deleting ownership will leave the contract without an owner, removing any owner-only
functionality.

« transferOwnership: The current owner can transfer ownership of the contract to a new account.

To make the smart contract 100% decentralized, we suggest renouncing

ownership of the smart contract once its function is completed.

inspector.lovely.finance Audited by INSPECTOR LOVELY



<, INSPECTOR
% LOVELY

CONCLUSION

We were given a contract code in the form of Etherscan web links. And we
have used all possible tests based on given objects as files. We had observed
3 informational issues in the smart contracts. And those issues are not
critical. So, it’s good to go for the production

Since possible test cases can be unlimited for such smart contracts protocol,
we provide no such guarantee of future outcomes. We have used all the
latest static tools and manual observations to cover the maximum possible
test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed
with static analysis tools. Smart Contract’'s high-level description of
functionality was presented in the As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security State of the reviewed smart contract, based on standard audit
procedure scope, is “Secured”.

L _BOR;

inspector.lovely.finance Audited by INSPECTOR LOVELY




INSPECTOR
LOVELY

ADDENDUM

Code Flow Diagram - Memecoin

# QoSiring()
@ QoHe:
® Qaverag

S\RYaISON, & Qequall)
© Qabs() __constructor_|
permi()

) Ownable

O

soprove()

L _BOR;

inspector.lovely.finance Audited by INSPECTOR LOVELY




<, INSPECTOR
¥ LOVELY

SECURITY ASSESSMENT REPORT

Slither is a Solidity static analysis framework that uses vulnherability
detectors, displays contract details, and provides an API for writing custom
analyses. It helps developers identify vulnerabilities, improve code
comprehension, and prototype custom analyses quickly. The analysis
includes a report with warnings and errors, allowing developers to quickly
prototype and fix issues.

We did the analysis of the project together. Below are the results.

Slither Log >> Memecoin.sol

ERC20Permit.constructor(string).name (Memecoin.sol#849) shadows:

- ERC20.name() (Memecoin.sol#708-718) (function)

- IERC28Metadata.name() (Memecoin.sol#3085) (function)
Memecoin.constructor(string,string,uint256,address).name (Memecoin.sol#894) shadows:

- ERC20.name() (Memecoin.sol#708-710) (function)

- IERC20Metadata.name() (Memecoin.sol#365) (function)
Memecoin.constructor(string,string,uint256,address).symbol (Memecoin.sol#894) shadows:

- ERC20.symbol() (Memecoin.sol#712-714) (function)

- IERC20Metadata.symbol() (Memecoin.sol#307) (function)
Memecoin.permit(address,address,uint256,uint256,uint8,bytes32,bytes32).owner (Memecoin.sol#902) shadows:

- Ownable.owner{) (Memecoin.sol#668-678) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing

Memecoin.setTokenPool(address)._tokenPool (Memecoin.sol#916) lacks a zero-check on :
- tokenPool = _tokenPool (Memecoin.sol#911)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

ERC20Permit.permit{address,address,uint256,uint256,uint8,bytes32,bytes32) (Memecoin.sol#851-870) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string)(block.timestamp <= deadline,ERC28Permit: expired deadline) (Memecoin.sol#86@)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp

Math.mulDiv(uint256,uint256,uint256) (Memecoin.sol#27-76) uses assembly
- INLINE ASM (Memecoin.sol#31-35)
- INLINE ASM (Memecoin.sol#45-50)
- INLINE ASM (Memecoin.sol#54-60)
Strings.toString(uint256) (Memecoin.sol#344-362) uses assembly
- INLINE ASM (Memecoin.sol#349-351)
- INLINE ASM (Memecoin.sol#354-356)
ECDSA.tryRecover(bytes32,bytes) (Memecoin.sol#416-430) uses assembly
- INLINE ASM (Memecoin.sol#421-425)
ECDSA. toEthSignedMessageHash(bytes32) (Memecoin.sol#469-475) uses assembly
- INLINE ASM (Memecoin.sol#470-474)
ECDSA.toTypedDataHash(bytes32,bytes32) (Memecoin.sol#481-489) uses assembly

ERC20Permit.constructor(string).name (Memecoin.sol#849) shadows:

- ERC20.name( ) (Memecoin.sol#788-716) (function)

- IERC28Metadata.name() (Memecoin.sol#385) (function)
Memecoin.constructor(string,string,uint256,address).name (Memecoin.sol#894) shadows:

- ERC20.name() (Memecoin.sol#788-710) (function)

- IERC20Metadata.name() (Memecoin.sol#385) (function)
Memecoln.constructor[strlng,stang,ulntZSB,address).symbol (Memecoin.sol#894) shadows:

- ERC20.symbol() (Memecoin.sol#712-714) (function)

- IERC20Metadata.symbol() (Memecoin.sol#307) (function)
Memecoin.permit(address,address,uint256,uint256,uint8,bytes32,bytes32),.owner (Memecoin.sol#902) shadows:

- Ownable.owner({) (Memecoin.sol#668-678) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing

Memecoin.setTokenPool(address)._tokenPool (Memecoin.sol#91@) lacks a zero-check on :
- tokenPool = _tokenPool (Memecoin.sol#911)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

ERC20Permit.permit({address,address,uint256,uint256,uint8,bytes32,bytes32) (Memecoin.sol#851-870) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string)(block.timestamp <= deadline,ERC20Permit: expired deadline) (Memecoin.sol#860)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp

inspector.lovely.finance Audited by INSPECTOR LOVELY



INSPECTOR
LOVELY

Math.mulDiv(uint256,uint256,uint256) (Memecoin.sol#27-76) uses assembly
- INLINE ASM (Memecoin.sol#31-35)
- INLINE ASM (Memecoin.sol#45-50)
- INLINE ASM (Memecoin.sol#54-60)
Strings.toString{uint256) (Memecoin.sol#344-362) uses assembly
- INLINE ASM (Memecoin.sol#349-351)
- INLINE ASM (Memecoin.sol#354-356)
ECDSA.tryRecover(bytes32,bytes) (Memecoin.sol#416-430) uses assembly
- INLINE ASM (Memecoin.sol#421-425)
ECDSA.toEthSignedMessageHash(bytes32) (Memecoin.sol#469-475) uses assembly
- INLINE ASM (Memecoin.sol#470-474)
ECDSA. toTypedDataHash(bytes32,bytes32) (Memecoin.sol#481-489) uses assembly

Math.ceilDiv(uint256,uint256) (Memecoin.sol#23-25) is never used and should be removed
Math.log18(uint256) (Memecoin.sol#157-189) is never used and should be removed
Math.log18(uint256,Math.Rounding) (Memecoin.sol#191-196) is never used and should be removed
Math.log2(uint256) (Memecoin.sol#112-148) is never used and should be removed
Math.log2(uint256,Math.Rounding) (Memecoin.sol#150-155) is never used and should be removed
Math.log256(uint256) (Memecoin.sol#198-222) is never used and should be removed
Math.log256(uint256,Math.Rounding) (Memecoin.sol#224-229) is never used and should be removed
Math.max(uint256,uint256) (Memecoin.sol#11-13) is never used and should be removed
Math.min{uint256,uint256) (Memecoin.sol#15-17) is never used and should be removed
Math.mulDiv(uint256,uint256,uint256) (Memecoin.sol#27-76) is never used and should be removed
Math.mulDiv(uint256,uint256,uint256,Math.Rounding) (Memecoin.sol#78-84) is never used and should be removed
Math.sqrt{uint256) (Memecoin.sol#86-103) is never used and should be removed
Math.sqrt(uint256,Math.Rounding) (Memecoin.sol#185-110) is never used and should be removed
SignedMath.abs(int256) (Memecoin.sol#246-250) is never used and should be removed
SignedMath.average( int256, int256) (Memecoin.sol#241-244) is never used and should be removed
SignedMath.max( int256, int256) (Memecoin.sol#233-235) is never used and should be removed
SignedMath.min( int256, int256) (Memecoin.sol#237-239) is never used and should be removed
StorageSlot.getAddressSlot(bytes32) (Memecoin.sol#521-525) is never used and should be removed
StorageSlot.getBooleanSlot(bytes32) (Memecoin.sol#527-531) is never used and should be removed
StorageSlot.getBytes32Slot(bytes32) (Memecoin.sol#533-537) is never used and should be removed
StorageSlot.getBytesSlot(bytes) (Memecoin.sol#563-567) is never used and should be removed
StorageSlot.getBytesSlot(bytes32) (Memecoin.sol#557-561) is never used and should be removed
StorageSlot.getStringSlot(bytes32) (Memecoin.sol#545-549) is never used and should be removed
StorageSlot.getStringSlot(string) (Memecoin.sol#551-555) 1is never used and should be removed
StorageSlot.getUint256Slot(bytes32) (Memecoin.sol#539-543) is never used and should be removed
Strings.equal(string,string) (Memecoin.sol#396-392) is never used and should be removed
Strings.toHexString(address) (Memecoin.sol#386-388) is never used and should be removed
Strings.toHexString(uint256) (Memecoin.sol#368-372) is never used and should be removed
Strings.toHexString{uint256,uint256) (Memecoin.sol#374-384) is never used and should be removed
Strings.toString(int256) (Memecoin.sol#364-366) is never used and should be removed
Strings.toString(uint256) (Memecoin.sol#344-362) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Pragma version”8.8.0 (Memecoin.sol#2) allows old versions
solc-0.8.0 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Function IERC26Permit.DOMAIN_SEPARATOR( ) (Memecoin.sol#284) is not in mixedCase

Function ERC20Permit.DOMAIN_SEPARATOR() (Memecoin.sol#876-878) is not in mixedCase

Variable ERC20Permit._PERMIT_TYPEHASH_DEPRECATED_SLOT (Memecoin.sol#847) is not in mixedCase

Parameter Memecoin.setTokenPool(address)._tokenPool (Memecoin.sol#918) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

ShortStrings.slitherConstructorConstantVariables() (Memecoin.sol#571-580) uses literals with too many digits:

- _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF (Memecoin.sol#573)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
Memecoin.sol apalyzed (17 contracts ui.th 84 detestors), 77 result(s) found

inspector.lovely.finance Audited by INSPECTOR LOVELY



INSPECTOR
LOVELY

SOLIDITY STATIC ANALYSIS

Static code analysis is used to identify many common coding problems
before a program is released. It involves examining the code manually or
using tools to automate the process. Static code analysis tools can
automatically scan the code without executing it.

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally
static analysis modules do not parse inline Assembly, this can lead to wrong
analysis results.

more

Pos: 1012:15:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 1704:23:

Gas costs:

Gas requirement of function Memecoin.permit is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 1761:11:

Similar variable names:

Memecoin.(string,string,uint256,address) : Variables have very similar names
"_totalSupply" and "totalSupply_". Note: Modifiers are currently not considered
by this static analysis.

Pos: 1756:31:

inspector.lovely.finance Audited by INSPECTOR LOVELY



—. INSPECTOR
3 LOVELY

No return:

StorageSlot.getBytesSlot(bytes): Defines a return type but never explicitly
returns a value.
Pos: 946:11:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 1704:15:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos:1711:15:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 /100
= 0 instead of 0.1 since the result is an integer again. This does not hold for
division of (only) literal values since those yield rational constants.

Pos: 181:35:

inspector.lovely.finance Audited by INSPECTOR LOVELY




%, INSPECTOR
+3 LOVELY

i

COMPLIANCE ANALYSIS

Linters are the utility tools that analyze the given source code and report
programming errors, bugs, and stylistic errors. For the Solidity language,
there are some linter tools available that a developer can use to improve the
quality of their Solidity contracts.

Memecoin.sol

inspector.lovely.finance Audited by INSPECTOR LOVELY




INSPECTOR
LOVELY

Software analysis result:

These software reported many false positive results and some are
informational issues.
So, those issues can be safely ignored.

inspector.lovely.finance Audited by INSPECTOR LOVELY



G INSPECTOR
“@d LOVELY

INSPECTOR LOVELY
INFO

Website: Inspector.lovely.finance
Telegram community: t.me/inspectorlovely

Twitter: twitter.com/InspectorLovely

L _BOR;

inspector.lovely.finance




